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a b s t r a c t

In safety–critical applications, it is necessary to justify, prior to deployment, why software behaviour is to
be trusted. This is normally referred to as software safety assurance. Within certification standards,
developers demonstrate this by appealing to the satisfaction of objectives that the safety assurance stan-
dards require for compliance. In some standards the objectives can be very detailed in nature, prescribing
specific processes and techniques that must be followed. This approach to certification is often described
as prescriptive or process-based certification. Other standards set out much more high-level objectives
and are less prescriptive about the particular processes and techniques to be used. These standards
instead explicitly require the submission of an assurance argument which communicates how evidence,
generated during development (for example from testing, analysis and review) satisfies claims concern-
ing the safety of the software. There has been much debate surrounding the relative merits of prescriptive
and safety assurance argument approaches to certification. In many ways this debate can lead to confu-
sion. There can in fact be seen to be a role for both approaches in a successful software assurance regime.
In this paper, we provide a comparative examination of these two approaches, and seek to identify the
relative merits of each. We first introduce the concepts of assurance cases and prescriptive software
assurance. We describe how an assurance case could be generated for the software of an aircraft wheel
braking system. We then describe how prescriptive certification guidelines could be used in order to gain
assurance in the same system. Finally, we compare the results of the two approaches and explain how
these approaches may complement each other. This comparison highlights the crucial role that an assur-
ance argument can play in explaining and justifying how the software evidence supports the assurance
argument, even when a prescriptive safety standard is being followed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Software safety assurance is often demonstrated by compliance
with national or international safety standards. Compliance with
standards aims to provide assurance that the software functions
are performed with a level of confidence which is proportionate
to the safety criticality of those functions (RTCA, 2012; IEC, 2010;
MoD, 2007). That is, high levels of confidence have to be achieved
for software-based functions whose failures could lead to harm, i.e.
death, injury or damage to property or the environment in their
system context. Within existing safety certification standards, typ-
ically developers demonstrate that a software system is acceptably
safe by appealing to the satisfaction of a set of objectives that the
safety standards require for compliance. In some standards the
objectives can be very detailed in nature, prescribing specific pro-
cesses and techniques that must be followed. This approach to cer-
tification is often described as prescriptive or process-based

certification. Different sets of objectives are normally associated
with different safety integrity or assurance levels. These levels
are assigned according to the level of risk associated with the haz-
ards to which the software can contribute. The means for satisfying
these objectives are often tightly defined within the prescriptive
standards, leaving little room for developers to apply alternatives
means for compliance which might better suit their software prod-
ucts and processes. On the other hand, goal-based standards set
out higher level objectives and explicitly require the submission
of an argument which communicates how evidence, generated
from testing, analysis and review, supports claims concerning the
safety of the software functions. The argument and evidence with-
in this approach are often presented in the form of a safety or
assurance case. There are some concerns regarding the adequacy
of the guidance available for the creation of assurance arguments
which comply with the objectives set within these standards (i.e.
lack of sufficient worked examples of arguments, sample means
for generating evidence and guidance on how to assess assurance
cases) (Penny et al., 2001; Habli et al., 2010).

Recently, the requirement for a safety and assurance case has
been considered in emerging national and international standards.
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For example, a safety case is required for compliance with the new
automotive functional safety standard ISO 26262 (ISO, 2011). The
development of a software assurance case is also a recommended
practice in the US Food and Drug Administration’s draft guidance
on the production of infusion pump systems (FDA, 2010). As a con-
sequence, there is an increased interest in understanding how
safety case development compares to, and possibly complements,
traditional means for safety compliance by satisfying prescriptive
guidelines.

The hypothesis in this paper is as follows: assurance cases and
compliance with prescriptive standards are complementary for
providing a reasoned justification concerning the contributions of
software to system safety. In considering this hypothesis, we pro-
vide a comparative examination of the above two approaches to
software safety assurance. This comparison highlights, based on a
specific case study of an aircraft wheel braking system, the advan-
tages and limitations of both assurance case and prescriptive ap-
proaches. Our study shows how these approaches complement
each other and discuss the role that an assurance argument can
play, even when a prescriptive safety standard is being followed.

1.1. Methodology

The research reported in this paper falls under the category of
case study research (Yin, 2003), i.e. it aims to provide a deeper
understanding of a phenomenon by investigating the phenomenon
in its context (Runeson and Höst, 2009). The phenomenon we
investigate is safety assurance for software systems. Specifically,
the natural context for the software system addressed in this paper
is the aircraft, the wheel braking system, its operational environ-
ment and relevant certification requirements. Although our com-
parative case study includes a combination of formal, informal,
qualitative and quantitative data, most of the significant findings
are presented qualitatively, e.g. in the form of feedback from the
engineers and assessors on the defined criteria. Although quantita-
tive data could be generated, such data would fall short of support-
ing our findings with statistical significance. The integrity of the
study and findings is maintained through preserving the chain of
evidence between the evaluation of findings (Section 5) and their
supporting data (Section 4).

1.2. Comparison criteria

For any safety assurance approach at least three main stake-
holder groups can be identified. These are the developers with
responsibility for developing and assuring the system, the review-
ers who must understand and make judgments as to the suffi-
ciency of the safety assurance achieved (as part of the acceptance
task), and managers who have responsibility for ensuring the suc-
cessful delivery of a certified system. Our examination therefore
focuses on a number of criteria relevant to the three main groups
of stakeholders. The criteria are:

1. Clarity: does the approach produce a comprehensible and well-
structured set of documentation of the safety assurance data?

2. Rationale: are the reasons as to why the chosen means for assur-
ance achieve confidence in software safety explicitly described
and justified?

3. Amenability to review: are reviewers provided with sufficient
safety assurance data to identify flawed reasoning and untrust-
worthy evidence?

4. Predictability: do the certification guidelines and past experi-
ence provide enough indication about what constitutes ade-
quate safety assurance data?

5. Effort: what are the cost implications of using the assurance
approach?

The clarity and rationale criteria are important for both devel-
opers and reviewers. Amenability to review is particularly relevant
to reviewers. The predictability and effort criteria are important for
managers. These criteria are derived from our experience of
reviewing assurance cases and DO178C Software Accomplishment
Summaries (SAS), and in providing advice to companies on soft-
ware processes including adopting novel technologies (Hawkins,
2007; Denney et al., 2012). The clarity criterion is clearly key to
any certification approach. The rationale criterion is important
when changing processes, or employing new technology. The ame-
nability to review criterion reflects a common problem – reviewers
are often presented evidence with insufficient explanation of how
it demonstrates safety; the Nimrod review (Cave, 2009) is further
evidence to support the relevance of this criterion, which high-
lighted the need for review methods to assess that sufficient con-
fidence can be placed in safety cases. The predictability and
effort criteria are linked. For example, a process may be compara-
tively cheap, but also very unpredictable, or vice versa.

In order to get further reassurance of the sufficiency of the cri-
teria used, we obtained feedback, through structured question-
naires, from two representatives of regulators and assessment
organisations, as well as five developers. The respondents stated
that they understood the criteria and that they believed the criteria
provide an effective basis for comparison of different approaches.

1.3. Organisation of the paper

We first introduce, in Sections 2 and 3, the concepts of assur-
ance cases and prescriptive software assurance respectively. In
Section 4, we describe an aircraft wheel braking system that will
be used for the comparison study; this is chosen as it builds on
material in one of the most widely used civil aerospace standards
(SAE, 1996b). We then illustrate two different assurance ap-
proaches for this system. Firstly we describe how a software assur-
ance case could be generated for the example system, in the light
of guidance from standards such as the Defence Standard 00-56
(MoD, 2007) and the Civil Aviation Authority standard CAP 670
(CAA, 2007). Secondly we describe how more prescriptive certifica-
tion guidelines could be used in order to gain assurance for the
same system, in the light of the civil aerospace guidance DO178C
(RTCA, 2012), and consider other standards which can be viewed
as more prescriptive than DO178C. In Section 5 we evaluate the re-
sults of applying the two different software assurance approaches
to the case study. Section 6 presents the conclusions.

2. Software assurance cases and related work

The concept of assurance is fundamental to any certification or
acceptance regime. Certification refers to the ‘‘process of assuring
that a product or process has certain stated properties, which are then
recorded in a certificate’’ (Jackson et al., 2007). Assurance can be de-
fined as justified confidence in a property of interest (Hawkins and
Kelly, 2010).

An assurance case attempts to demonstrate that sufficient
assurance has been achieved for a system; our focus here is on sys-
tems containing software. The concept of assurance cases has been
long established in the safety domain, where the term safety case is
normally used. The term assurance case refers to the increasing
generalization of this approach to include addressing other attri-
butes. For many industries, the development, review and accep-
tance of a safety case forms a key element of regulatory
processes, this includes the nuclear (HSE, 2006) and defence
(MoD, 2007) industries as well as civil aviation (CAA, 2007) and rail
(Rail Safety and Standards Board, 2007). Safety cases have been de-
fined by Kelly (1998) in the following terms: ‘‘A safety case should
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communicate a clear, comprehensible and defensible argument that a
system is acceptably safe to operate in a particular context’’. The ex-
plicit presentation of an argument is fundamental to any safety
case as it is used to demonstrate why the reader should conclude
that a system is acceptably safe from the evidence available.

More recently there has been increasing interest in the use of
assurance cases in other domains, particularly for demonstrating
system security (Bloomfield, 2005; Goodenough et al., 2007). The
similarities between assurance case concepts in different domains
have been highlighted in the SafSec study which explored the sim-
ilarities between safety and security cases (Dobbing and Lautieri,
2006). There have also been a number of initiatives to standardise
the description of assurance cases, particularly by the Object Man-
agement Group (OMG) (OMG, 2010), and through the development
of the ISO standard 15026 on assurance cases (ISO/IEC, 2010).
Whilst these bodies of work vary in detail they agree that, in gen-
eral, any assurance case must contain a compelling argument sup-
ported by strong evidence.

One area where there are potentially large benefits, but also
particular challenges in producing assurance cases is for software.
The potential benefits of an assurance case approach have been
discussed in detail by a number of authors (McDermid, 2001;
McDermid and Pumfrey, 2001). However, there has also been seen
to be a reluctance to move away from the more prescriptive
approach to certification of many of the most widely used software
safety and development standards. A major study into the develop-
ment of a safety case for a military aircraft software system was
undertaken by the Industrial Avionics Working Group (IAWG,
2007; Hawkins, 2007). In particular, this looked at the benefits that
a safety case approach can bring in facilitating modular and incre-
mental certification, with promising results. Similar results of the
use of software assurance cases for medical devices were reported
by Weinstock and Goodenough (2009), adding that ‘‘adoption will
take buy-in by a significant number of device manufacturers, and for
this to happen they must be educated’’.

Bloomfield and Bishop (2010) discussed the current practice
and uptake of safety and assurance cases for software-based sys-
tems. They concluded that, while the application to complex sys-
tems is a significant undertaking, the use of assurance cases for
software is very appealing, supporting as it does innovation and
flexibility. Further, Graydon et al. (2007) proposed an approach
to integrating assurance into the development process by co-devel-
oping the software system and its assurance case. This approach
enables assurance requirements to influence the design, assess-
ment and operation of a critical system from the earliest stages
(Lutz and Mikulski, 2003).

It is important for any assurance argument to be reviewed and
for its supporting evidence to be audited, prior to acceptance, in or-
der to identify any incorrect reasoning within the argument or lim-
itations in evidence (Kelly, 2007). Greenwell et al. (2006) examined
fallacies in assurance arguments for safety–critical systems, i.e.
arguments which may seem to be correct, but which prove, on
examination, not to be so. They maintained that if an assurance
argument is fallacious, the system could be subject to unidentified
hazards that could lead to accidents. To this end, engineers have to
be able to identify poor reasoning in order to avoid creating falla-
cious arguments. Likewise, representatives of certification author-
ities should be familiar with fallacies in order to detect them in the
process of reviewing assurance arguments.

Finally, software assurance arguments are predominantly
inductive, i.e. offering support for the top-level claim which is
short of certainty. They typically fall within the scope of informal
logic, compared to formal and mathematical logic which is based
on mathematical semantics and theory. However, there has been
increasing interest in the formalisation of parts of the assurance

argument (Littlewood and Wright, 2007; Habli and Kelly, 2008b;
Basir et al., 2008, 2010; Rushby, 2010).

3. Prescriptive software assurance and the DO178C guidance

This section introduces prescriptive certification in the context
of the civil aerospace guidance DO178C, titled: Software Consider-
ations in Airborne Systems and Equipment Certification (RTCA,
2012). DO178C has been chosen as our ‘exemplar’ prescriptive
standard because it has a long and extensive history of use. It is
also the most appropriate standard for the domain of our chosen
case study. Other standards and guidelines that are often catego-
rised as prescriptive (McDermid and Pumfrey, 2001) include IEC
61508 (IEC, 2010), ISO 26262 (ISO, 2011).

The purpose of the DO178C document is ‘‘to provide guidance
for the production of software for airborne systems and equipment
that performs its intended function with a level of confidence in
safety that complies with airworthiness requirements’’. The guid-
ance specifies certification requirements (i.e. in the form of objec-
tives), means for achieving these requirements and acceptable
forms of evidence (typically in the form of testing, analysis and re-
view data). DO178C defines a consensus of the aerospace commu-
nity concerning the approval of airborne software. To obtain
certification credit, developers submit lifecycle plans and data that
show that the production of the software has been performed as
prescribed by the DO178C guidance. Any deviation or alternative
means for compliance should be justified in the Plan for Software
Aspects of Certification (PSAC) and Software Accomplishment
Summary (SAS). As a result, the norm in the development of civil
airborne software is to use the guidance (i.e. means for compli-
ance) as prescribed in the DO178C document. This avoids the chal-
lenge of, and potential project delays due to, the need to justify the
deployment of alternative techniques. It also reduces the risk of not
achieving certification due to non-compliance.

The DO178C guidance distinguishes between different levels of
assurance based on the safety criticality of software, i.e. how soft-
ware components contribute to system hazards. The safety critical-
ity of software is determined at the system level during the system
safety assessment process based on failure conditions associated
with software components. These failure conditions are catego-
rised as follows:

– Catastrophic.
– Hazardous/Severe-Major.
– Major.
– Minor.
– No Effect.

The DO178C guidance defines five different assurance levels
which relate to the above categorisation of failure conditions (Lev-
els A to E, where Level A is the highest and therefore requires the
most rigorous processes). Each level of software assurance is asso-
ciated with a set of objectives, mostly related to the underlying
lifecycle process, e.g. planning, development and verification activ-
ities (Fig. 1). The objectives of DO178C are sufficiently detailed that
it effectively circumscribes much of the development process, even
where it does not prescribe specific techniques as in standards
such as IEC 61508 (IEC, 2010).

To demonstrate compliance with DO178C, applicants are re-
quired to submit the following data to the certification authority:

� Plan for Software Aspects of Certification (PSAC).
� Software Configuration Index.
� Software Accomplishment Summary (SAS).

R. Hawkins et al. / Safety Science 59 (2013) 55–71 57
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They should also make all software lifecycle data, e.g. related
to development, verification and planning, available for review
by the certification authority. In particular, the SAS should pro-
vide evidence that shows compliance with the PSAC. The SAS
should provide an overview of the system (e.g. architecture and
safety features) and software (e.g. functions and partitioning
strategies). It should also provide a summary of the potential soft-
ware contributions to system hazards, based on the system safety
assessment, and how this relates to the allocated assurance level.
The SAS then references the software lifecycle data produced to
satisfy the objectives associated with the allocated assurance
level.

4. Wheel braking system case study

In order to make the comparison between assurance cases and
prescriptive certification more focused, an example of software for
an aircraft system is used. The system under consideration is a
Wheel Braking System (WBS) for a new aircraft, called the S18,
based on the system specification in the Aviation Recommended
Practice (ARP) 4761 Appendix L (SAE, 1996b). The WBS provides
the braking of the wheels of the Main Landing Gear during landing
and rejected takeoff (RTO).

The system contains two independent Brake System Control
Units (BSCUs). Each BSCU contains a command and a monitor
channel as discussed in ARP4761 Appendix L and illustrated in
the architecture in Fig. 2. Brake pedal inputs (LBP and RBP), wheel
speeds (LWS and RWS) and aircraft speed (INS) are provided to the
command and monitor channels. The command channel computes
the necessary braking commands. The monitor channel checks the
plausibility of the sensor data and reports the validity. A failure re-
ported by either channel will cause the BSCU to disable its outputs
and set the BSCU Validity to invalid. The Validity of each BSCU is
provided to an overall System Validity Monitor. Failure of both
BSCUs will cause an independent Alternate Brake System to be
selected.

To demonstrate that the software system described above is
sufficiently safe to operate as part of the S18 aircraft, it is necessary
to provide assurance that the contribution that the software may
make to the aircraft hazards are acceptably managed. This involves
understanding the role that software could play in bringing about
the system level hazards. Functional hazard analysis of the WBS, as
documented in SAE (1996b), identifies the following main system
hazards: Loss of Deceleration Capability, Inadvertent Deceleration,
Partial Loss of Deceleration Capability and Asymmetric Decelera-
tion. Given the direct control exercised by the BSCU, the following

hazardous software contributions relating to these hazards can be
easily identified:

– Contribution 1:: Software fails to command braking when
required.

– Contribution 2: Software commands braking when not
required.

– Contribution 3: Software commands incorrect braking force.

From the software contributions to system hazards identified
above, it is possible to use knowledge of the BSCU high-level soft-
ware architecture design shown in Fig. 2 to specify a set of soft-
ware safety requirements (SSRs) for the Monitor and Command
channels of the BSCU. SSRs are required to define what each of
the components must do in order to mitigate the hazardous contri-
butions of software. In this example, we only consider the Com-
mand component. In particular, we consider the following SSRs:

– SSR1: On receipt of brake pedal position, Command shall calcu-
late braking force and output braking command (from contribu-
tion 1).

– SSR2: Command shall not output a braking command unless
brake pedal position is received (from contribution 2).

– SSR3: Braking commands generated by the Command compo-
nent meet defined criteria (from contribution 3). This require-
ment would need to define safe criteria for the braking
commands generated by both the simple braking function,
and also the more complex ABS function (see Fig. 3). For reasons
of brevity, we do not define those criteria here.

These software safety requirements will be further refined as
more design detail becomes available (Lee et al., 2010). For exam-
ple, with the low-level design for the command channel, as shown
in Fig. 3, SSRs will be defined for the individual ‘In’, ‘Braking’, ‘ABS’,
‘CMD Modifier’ and ‘OUT’ functions of the Command component.

In the next sections, we firstly describe how an assurance case
could be generated for the BSCU software. We then describe how
the DO178C guidance could be applied to the same system. In Sec-
tion 5 we compare the outcome of the two approaches, and also
broaden the discussion to consider other standards.

4.1. Developing an assurance case argument for BSCU software

In order to represent the BSCU software safety assurance argu-
ment clearly, we represent the argument graphically. We have cho-
sen to use the Goal Structuring Notation (GSN) (Kelly, 1998) to

Fig. 1. Overview of DO178C assurance levels.

Fig. 2. BSCU architecture.
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represent the assurance argument as this is a widely used notation
and is also the argument notation with which the authors are most
familiar. The basic elements of GSN are shown in Fig. 4. These sym-
bols can be used to construct an argument by showing how claims
(goals) are broken down into sub-claims, until eventually they can
be supported by evidence (solutions). The strategies adopted, and
the rationale (assumptions and justifications) can be captured,
along with the context in which the goals are stated. GSN is defined
in an industry standard (GSN, 2010).

When constructing more complex arguments, such as those of-
ten required for software systems, it can sometimes be useful to
split the argument into separate, but interrelated modules of argu-
ments (Kelly, 2001). When splitting an argument into modules it
becomes necessary to be able to refer to goals that exist within
other modules. To refer to goals in other modules, the GSN element
‘‘Away Goal’’ is used. Each away goal contains a module identifier,
which is a reference to the module where the goal can be found
(see Fig. 5).

Due to large size of the complete BSCU safety assurance case,
we only provide and discuss some of the key parts of the argument
and evidence. Any goals in the argument structures presented in
this section whose support we choose not to show are represented
with a diamond symbol beneath them (undeveloped goals). Such
goals would be developed further in the complete safety case.

The structure of the assurance argument detailed below is
based around demonstrating the following principles:

1. Software safety requirements shall be defined to address the
software contribution to system hazards.

2. The intent of the software safety requirements shall be main-
tained throughout requirements decomposition.

3. Software safety requirements shall be satisfied.
4. Hazardous behaviour of the software shall be identified and

mitigated.

The argument structure we use to demonstrate assurance in
each of these principles follows that proposed in Hawkins and
Kelly (2010) and Hawkins et al. (2011). It should be noted that

although the assurance approach described is a product-based ap-
proach (driven by the specific system hazards and based on consid-
eration of the properties of the specific software system) it is still
crucial that the rigor of the processes used is considered. In the fol-
lowing sections we describe in detail the argument structure cre-
ated for the BSCU software.

4.1.1. High level argument structure
Fig. 6 shows the high-level structure of the software safety

assurance argument for the BSCU represented using GSN. The
aim of the assurance argument is to demonstrate that the contribu-
tion made by the BSCU software to S18 WBS hazards is acceptable.
This safety claim is represented using a goal element (Goal:
swContributionAcc). This top-level goal is supported by sub-goals
relating to each of the identified software contributions. The GSN
strategy element is used to make clear what the strategy adopted
is (Strat: swContributionAcc). The context in which the top-level
argument claim is made is provided using a number of GSN context
elements. The context for the top-level claim are system and soft-
ware descriptions and a list of the identified hazards. ‘Goal:contI-
dent’ provides backing for the strategy in a separate argument
module. We discuss the provision of backing arguments in more
detail in Section 4.1.5.

Fig. 7 shows a simple argument for ‘Goal: contIdent’. This shows
how the base events from system level fault tree analysis may be
used to identify the software contributions to the system level haz-
ards. One of the key features of this argument is the provision of a
trustworthiness argument (Goal:WBSFTATrust) relating to the evi-
dence used in the argument (in this case evidence from fault tree
analysis).

4.1.2. Trustworthiness arguments
It is desirable to provide a trustworthiness argument for all key

evidence items in an argument (such as fault tree evidence in
Fig. 7). The concept of trustworthiness relates to freedom from
flaw. The flaws with which we are concerned are those that may
prevent the item of evidence from fulfilling its role in the argu-
ment. In the legal field the notion of integrity of evidence is often
used to refer to the soundness or quality of the evidence put for-
ward in a case. Lawyers may look to undermine the integrity of evi-
dence by questioning the way in which the evidence was gathered.
Similarly, in considering the trustworthiness of an item of evidence

Fig. 3. Design of the BSCU command channel software.

<Identifier>

<Summary>

<Identifier>

<Summary>

Goal Justification Context Assumption

In Context Of Solved By Solution Strategy

J A

Fig. 4. Main elements of the GSN notation.

Fig. 5. GSN away goal.
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Fig. 6. Top-level software assurance argument.

Fig. 7. Software contribution argument.

60 R. Hawkins et al. / Safety Science 59 (2013) 55–71



Author's personal copy

used to support an assurance argument, the processes used to gen-
erate that artefact are often considered. The structure of such an
argument is discussed in Habli and Kelly (2007) and Habli and
Kelly (2008a).

4.1.3. Arguments over the software design
Claims are made in the argument in Fig. 6 that each of the iden-

tified software contributions is acceptably managed. In our exam-
ple in Fig. 8 we develop the argument relating to just contribution
1 (i.e. software failure to command braking when required). To
support this claim in the argument it is necessary to consider the
design and development of the BSCU software. In line with the ear-
lier stated principles, the argument must demonstrate assurance in
the establishment of valid and complete software safety require-
ments (SSRs) for each ‘tier’ of decomposition of the software design
for the BSCU software. It must then be demonstrated that those
SSRs are satisfied throughout design decomposition, and that there
is an absence of hazardous errors at each tier. In the example BSCU
system the tiers of design decomposition to be considered are the
software architecture design, the channel design, the low-level
module design and the source code.

4.1.4. Argument at software architecture level
In Fig. 8 we begin by considering the BSCU architecture design

(the highest tier of design decomposition). The software architec-
ture design was shown in Fig. 2. It can be seen in Fig. 8 that claims
are made that the SSRs are addressed for each of the channels iden-
tified in the architectural design (Command and Monitor channels).
The support for each of these claims is provided in separate modules
of argument. We consider the arguments in these modules later.

4.1.5. Backing arguments
The use of argument modules helps to simplify the argument

structure. In Fig. 8, the modular argument notation has also been
used to separate out the backing arguments into separate modules

from the main argument. The backing arguments in Fig. 8 are
‘Goal: SSRidentify’ and ‘Goal: hazContArch’. ‘Goal: SSRidentify’
demonstrates that the SSRs defined for the software architecture
are appropriate given the identified software contributions. ‘Goal:
hazContArch’ demonstrates that potentially hazardous failures
are identified for the software architecture (for example mecha-
nisms for interference between the Command and Monitor chan-
nels), and are acceptably managed. Both of these backing
arguments are crucial to the validity of the safety argument.

4.1.6. Argument for the software channels
Fig. 9 shows the argument relating to the Command channel soft-

ware (Goal: SSRaddComm). This module of argument was refer-
enced by the argument in Fig. 8 (the argument that would be
provided for the Monitor channel would also have a similar struc-
ture to this). The argument demonstrates that the SSRs specified
for the Command channel are addressed (the SSRs may include func-
tional, timing or data related requirements as necessary). A claim is
made regarding each of the identified SSRs. In this case, as an exam-
ple, we provide the argument in Fig. 9 for one of the SSRs (SSR01).

The context to ‘Goal SSR1AddArchCommand’ defines this SSR
as, ‘‘On receipt of brake pedal position, Command channel shall calcu-
late braking force and output braking command’’. There can be seen
in Fig. 9 to be two legs to the argument for each SSR.

– Firstly, evidence generated at the software architecture level
can be provided in the argument to demonstrate that the SSR
is satisfied. In this case system integration testing is used to
show that the SSR is met.

– Secondly it is argued that the SSR is addressed through the next
level of design decomposition of the software (in this case the
low-level design for the command channel). This will involve
defining SSRs for each of the low-level design modules for the
command channel which are sufficient to realise SSR01. The
low-level design modules are shown in Fig. 3.

Fig. 8. BSCU architecture assurance argument.
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4.1.7. Argument for the channel design
An argument is then presented over each of the Command

channel SSRs. In Fig. 10, an argument module is created to reason
about the SSRs for each of low-level design modules of the Com-
mand channel (Goal: SSRaddBraking to Goal: SSRaddOut). Note
that both Output 1 and 2 were considered as part of the same argu-
ment module (Goal: SSRaddOut).

As at the architectural design (fig. 8), the argument must dem-
onstrate that the intent of the software safety requirements has
been maintained in the design decomposition (‘Goal: SSRidentify-
Des’). Also that possible hazardous failures that may manifest
themselves in the Command channel software design have been
identified and mitigated. This is done under ‘Goal: hazContDes’
as shown in Fig. 11. There are two aspects to the argument in
Fig. 11:

– Firstly the argument considers the integrity of the Command
channel design itself. In Fig. 11 this is demonstrated simply
through evidence provided from a manual review of the Com-
mand channel deign that checks the design for errors. Again a
trustworthiness argument is provided to demonstrate why that
manual review of the design is felt to be sufficient in this case.

– Secondly the argument considers possible unintended (unspec-
ified) behaviour of the software and whether the set of SSRs for
the Command channel are sufficient to address these. There are
various techniques available for identifying deviations from
intended behaviour in software designs that could provide
assurance here. In the example in Fig. 11, a Software HAZOP
(Redmill et al., 1999) has been applied to the low-level design
(details of this are omitted for brevity).

4.1.8. Argument for the module design
Fig. 12 continues the argument from Fig. 10 by showing the

argument for the Braking module. It can be seen that the argument
relating to this low-level design module has the same basic struc-
ture as that provided for the architectural design level in Fig. 9. In
this case the SSRs defined for the low-level design are considered
(SSRs 1.1, 1.2, and 1.3). The example we have chosen is SSR 1.1 –
‘‘If Demand input is received, then CMD output shall be provided’’. A
similar argument could be presented for SSR 1.2 and 1.3 also.
The evidence that was chosen to demonstrate that the SSRs are sat-
isfied at this level of design can be seen to be unit test results. It
should be noted that the results of specific unit tests relating to
the particular SSR (SSR 1.1) are provided. Again the safety

Fig. 9. BSCU command channel assurance argument.
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requirement, SSR 1.1, is traced through to the next tier of decom-
position in the design, which in this case is the source code itself.

A trustworthiness argument is provided for the unit testing
(‘Goal: SSR1.1UnitTestTrust’). This argument considers the ade-
quacy of the testing in terms of:

– Its coverage of the required software function
– The integrity of the evidence – considering the process used to

produce the evidence as well as the integrity of the tools and
people used in its generation.

4.1.9. Argument for the source code
Fig. 13 shows the argument that SSR1.1 is addressed by the

source code for the Braking module. At the level of the source code
it is not necessary to argue that the SSRs are correctly defined since
no new SSRs are specified at the code level (this is captured in
Fig. 13 as assumption ‘Ass: CodeLevelSSRs’). It is necessary how-
ever to demonstrate that the source code does not contain poten-
tially hazardous errors. This is argued under backing argument
Goal: desErrorCode shown in Fig. 14. To show that SSR1.1 is satis-
fied at the source code level, semantic analysis of the code is per-
formed, the report on which is provided in the evidence. To
complete the argument it is necessary to show that the SSR is also
met by the compiled object code. As indicated in Fig. 13, this could
be an argument over the integrity of the compiler used.

Fig. 14 demonstrates assurance that the source code produced
for the Braking module does not contain potentially hazardous er-

rors. This is demonstrated through the use of both static informa-
tion flow analysis to show the absence of run-time errors, and also
through a code review of the Braking module source code.

The example discussed above illustrates how, by demonstrating
assurance throughout all the development tiers of a software sys-
tem it is possible for a safety assurance argument to be built up.
Guidance on how to produce software safety arguments in the
form of a catalogue of software safety argument patterns can be
found in Hawkins and Kelly (2010). This builds upon existing work
such as Kelly (2001), Weaver (2003), Ye (2005) and Menon et al.
(2009) and also takes account of current good practice for software
safety, including from existing standards.

4.2. Assurance of BSCU software using DO178C

In the previous section, we illustrated how an assurance argu-
ment can be created to justify the safety of the BSCU software. In
this section, we present how assurance for the same software
can be provided by means of compliance with a prescriptive certi-
fication approach based on the DO178C guidance (RTCA, 2012).

Based on the system safety assessment, which is carried out
against the Aviation Recommended Practice (ARP) 4754 and
4761 (SAE, 1996a, 1996b), the command channel is allocated
assurance level ‘A’ while the monitor channel is allocated assur-
ance level ‘B’. The rationale is that producing and verifying the soft-
ware against the processes of level ‘A’ and level ‘B’ objectives and
techniques should preclude software ‘‘design flaws of concern’’

Fig. 10. Command channel design modules argument.
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(SAE, 1996a). This is based on the results of the system fault tree
analysis which indicate that there shall be no ‘‘loss of BSCU ability
to command braking’’ (SAE, 1996a). The results also indicate that
‘‘there must be no common mode failures of the command and mon-
itor channels of a BSCU system that could cause them to provide the
same incorrect braking command simultaneously’’ (SAE, 1996a).
These system safety aspects are flown down from the system pro-
cesses in the form of safety requirements, as part of the systems
requirements allocated to software, based on the Preliminary Sys-
tem Safety Assessment (PSSA).

At this stage, unlike safety assessment at the system level, no
explicit hazard and failure analysis is required at the BSCU soft-
ware level. All of what is needed at this stage is for the command
and monitor channels to be produced to assurance levels ‘A’ and ‘B’
respectively. For the command channel, which is Level ‘A’, an addi-
tional objective related to the accomplishment of the Modified
Condition/Decision Coverage (MC/DC) of software structure is re-
quired (Hayhurst et al., 2001). Further, for level ‘A’ software, more
objectives, such as the review of the software architecture and
source code, have to be achieved with independence, i.e. verifica-
tion is carried out by individuals other than the developers of the
artefact under verification (CAST, 2006). Finally, traceability be-
tween source and object code should be justified if structural cov-
erage analysis is performed on the source code rather than on the
executable object code. Evidence generated by compliance with
Levels ‘A’ and ‘B’ guidance is based on data produced by the plan-
ning, development, verification, configuration management and
quality assurance activities. These activities are specified in the
DO178C guidance. The data generated by these activities is sum-
marised in Table 1.

Although most of the data described in Table 1 is necessary to
provide assurance for the BSCU software, the software verification
results provide the most targeted evidence concerning the satisfac-
tion of the system requirements, particularly those related to

safety. The certification objectives satisfied by the software verifi-
cation results for software level ‘A’ are listed in Table 2. For exam-
ple, for the system safety requirement that there shall be no ‘‘loss of
BSCU ability to command braking’’ (SAE, 1996a), verification results,
generated from review, analysis and testing, should provide evi-
dence to substantiate the following:

– One or more high-level software requirements have been devel-
oped that satisfy the system safety requirement that there shall
be no ‘‘loss of BSCU ability to command braking’’. These require-
ments are allocated onto the Monitor and Command channels
of the BSCU and specify the required behaviour of these chan-
nels in order to mitigate the hazardous contributions of the ‘‘loss
of BSCU ability to command braking’’.

– These high-level software requirements have been refined into
software architecture and low-level software requirements
which are in turn developed into, and satisfied by, source code.
For example, low-level software requirements specify how the
software components within the Command channel should
respond to external inputs, e.g. brake pedal position.

– Executable object code satisfies all the software requirements
(including derived software requirements), and is robust
against predictable unintended inputs.

– Executable object code does not perform any unintended
function.

Given that exhaustive testing is infeasible for a complex soft-
ware system such as the BSCU (Butler and Finelli, 1991), DO178C
defines various verification criteria for judging the adequacy of
the software testing (i.e. has the software been tested enough?).
Two of these criteria relate to the coverage of requirements and
code structure (see ‘Verification of Outputs of Software Testing’ in Ta-
ble 2). The rigour of these criteria is associated with the safety crit-
icality of the software. The analysis of the achievement of the

Fig. 11. Command channel hazard analysis software argument.
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requirements coverage criterion should show that normal and
robustness test cases exist for every software requirement. How-
ever, this is often not enough, as it does not demonstrate absence
of unintended functionality. The absence of unintended functional-
ity is addressed by structural coverage analysis which measures
how well the software structure is exercised by the test cases (i.e.
have we exercised the software structure enough to get confidence
concerning the absence of unintended functionality?). For example,
for the monitor channel, which is level ‘B’, structural coverage anal-
ysis should demonstrate decision coverage of the code structure. On
the other hand, for the command channel, which is level ‘A’, struc-
tural coverage analysis should demonstrate Modified Condition/
Decision Coverage (MC/DC) of the code structure, a more rigorous
coverage criterion requiring that ‘‘each condition is shown to inde-
pendently affect the outcome of the decision’’ (Hayhurst et al., 2001).

The way in which verification evidence is specified in DO178C is
a pragmatic approach, based on consensus within the aerospace
community, concerning the required rigour for evidence against
the different levels of safety assurance (e.g. MC/DC for level ‘A’
and decision coverage of level ‘B’). These objectives reflect a com-
promise between the ‘‘ideal’’ of exhaustive coverage and realistic
testing strategies. Whilst the choice of MC/DC might now be ques-
tioned as formal techniques make more exhaustive analysis practi-
cable, the consensus of the community has been to preserve this
objective in DO178C.

In short, DO178C promotes a clear process of requirements
refinement. This process starts at the point at which systems
requirements are allocated to software. The refinement process
concludes when the executable object code is generated and tested
against the high-level and low-level requirements. The rigour with
which the software is tested is proportionate to the safety critical-
ity of the software. Further, the level of trustworthiness in the
items of evidence varies between different assurance levels. For
example, many items of evidence for satisfying the level ‘A’ criteria
are required to be generated with independence. In contrast to
trustworthiness arguments discussed in Section 4.1.2 however,
the trustworthiness of an individual item of evidence with respect
to its role in the safety argument is not explicitly considered in
DO178C. This process also demands that any new functions gener-
ated at any refinement stage are addressed by derived software
requirements and fed to the system safety assessment process
for further analysis.

5. Evaluation of case study results

In this section we evaluate the results, as reported above, of
applying the two different software assurance approaches to the
case study. Firstly we provide discussion of the two approaches be-
fore providing a direct comparison, using the comparison criteria

Fig. 12. Braking module assurance argument.
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described in Section 1.2. Finally we discuss the validity and limita-
tions of the case study results.

5.1. Assurance case argument discussion

The true strength of an assurance argument stems from the fact
that it allows the developer to clearly and systematically commu-
nicate why it is believed that there is sufficient assurance in the
software. A hazard-focused, structured argument such as that de-
scribed in the example in the previous section can make it much
easier to identify areas where the assurance may be insufficient.
In particular, rather than providing general claims about require-
ments traceability and verification, the software assurance argu-
ment provides specific claims relating to the safety requirements
identified for the software. Crucially, the safety argument also con-
siders all aspects of the safety of the software which may under-
mine assurance in the specific safety claims made about the
product. This may involve analysing the potential uncertainties
or assurance deficits in the software design and development. Nev-
ertheless, this level of flexibility in the construction of a software
assurance case increases the burden on the certification auditors
since the assurance case argument and evidence for different soft-
ware systems will be different and therefore very difficult to assess
in a systematic and repeatable way (Wassyng et al., 2010).

To be effective, the assurance case should not be constructed at
the end of a software development project, but developed in paral-
lel with the system itself. In that way the assurance argument can
inform design decisions and verification activities. The sufficiency
of these activities can be determined and assessed through con-
structing an explicit software assurance argument. In addition,
the role of each item of evidence in the assurance argument can
be clearly communicated, thus making it easier to justify its suffi-
ciency for its role in the overall argument. By developing the assur-
ance argument at the same time as the software system, assurance
deficits identified through consideration of the assurance argu-
ment can be addressed in a timely (and hopefully in a more cost-
effective) manner.

Finally, the argument presented in Section 4.1 is based on infor-
mal and inductive logic. For example, the argument is not mathe-
matically-based and does not follow a deductive reasoning process.
To this end, unlike formal methods, it is not possible to deduce, or
formally demonstrate, the substantiation of the safety claims using
the available evidence (Rushby, 2010; Wassyng et al., 2010). The
use of informal logic in the representation of assurance cases is a
common practice. However, as discussed in Section 2, there has
been an increased interest in improving the integration between
formal and informal reasoning in assurance cases (Basir et al.,
2010).

Fig. 13. Braking module source code assurance argument.
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5.2. Discussion of the BSCU software compliance against DO178C

Compliance with DO178C generates different items of evidence
in order to support various certification objectives such as those
described in Table 2. When these items of evidence are compared
with those supporting the assurance argument defined in Sec-
tion 4.1, it can be noticed that the outcome of compliance with
DO178C can provide full coverage of the evidence within the assur-
ance case. Nevertheless, it is important to note that this mapping is
not one-to-one. For example, Table 3 shows a mapping between
the items of the evidence included in the software assurance case
in Section 4.1 and how they correspond to the objectives satisfied
by DO178C verification results. In particular, consider the two
items of evidence in the assurance case (classDesignReview and
designHAZOP) which substantiate the claim that ‘‘potential hazard-
ous failures in the Command channel low-level design are acceptably

managed’’. These items of evidence correspond to the A.4.1 objec-
tive in DO178C which states that ‘‘Low-level requirements comply
with high-level requirements’’. The text in DO178C explains that this
objective aims ‘‘to ensure that the low-level requirements satisfy the
high-level requirements and that derived requirements and the design
basis for their existence are correctly defined’’. Many of these derived
requirements are defined in order to address situations in which
the ‘‘software design processes activities could introduce possible
modes of failure into the software or, conversely, preclude others’’.
Here, there is a difference between DO178C and an assurance case
approach in how hazardous software failure modes are considered.
In the example assurance case, the sufficiency of the identification
and mitigation of hazardous software failure modes is explicitly
justified within the software argument. In DO178C, software fail-
ure modes – where identified and where considered of possible
significance with respect to system level hazards – are fed back
to the system safety assessment process for further analysis. How-
ever, there is no explicit requirement, or suggested process, for the
identification of software failures modes as part of the software
development lifecycle. As a result, our experience is that this is
not done in a systematic or consistent manner, if at all.

Another important aspect is that not all items of evidence in the
software assurance case are within the scope of DO178C. For
example, as shown in Fig. 7, the item of evidence ‘WBSFTA’ is gen-
erated by the system fault tree analysis at the system level, against
another aerospace standard 4754 and 4761 (SAE, 1996a, 1996b).
This is clearly an input to the DO178C process rather than an out-
put of it. Therefore, it is important to consider the DO178C guid-
ance in the context of the wider system certification process.

In short, various types of evidence have to be generated for
compliance with DO178C. The rigour of these types of evidence
is predetermined by the DO178C guidance and varies according
to the allocated assurance level. In particular, verification evidence,
generated from review, analysis and testing, should show the
achievement of objectives relating to the development, satisfaction
and traceability of systems requirements allocated to software. The
achievement of these objectives reflects a core argument within
DO178C, which may be implicit, unless it is summarised within
the PSAC and SAS.

Whilst this paper has focused upon one particular software
assurance standard – DO178C – as an exemplar of a prescriptive
standard, there are many other standards that share similar char-
acteristics. For example, IEC61508 similarly assumes and organizes
its requirements according to lifecycle phase, defines levels of rig-
our in the process according to Safety Integrity Levels, and provides
recommendations as to the required forms of evidence.

5.3. Comparing an assurance case and a DO178C approach

The discussion in Section 4.2 highlights the range of evidence
that is generated for the WBS software through following a
DO178C process. It can be seen that all of such evidence could be
used to support an assurance argument as described in Section 4.1.
The assurance argument can in such a way be used to explain how
the evidence generated from the DO178C process provides suffi-
cient assurance.

In this section, we revisit the comparison criteria introduced in
Section 1.2 and explain the advantages and limitations of assur-
ance cases and prescriptive certification based on the outcome of
Sections 4.1 and 4.2. We then use this to identify two ways in
which the approaches might be reconciled.

1. Clarity: Compliance with the DO178C guidance produces a
set of lifecycle data covering the whole of the software engi-
neering process (as shown in Table 1). The aims for the pro-
duction of this data are clearly stated in the guidance.

Fig. 14. Code-level hazard analysis argument.

Table 1
DO178C lifecycle data.

Plan for Software Aspects of Certification
Software Development Plan
Software Verification Plan
Software Configuration Management Plan
Software Quality Assurance Plan
Software Requirements Standards
Software Design Standards
Software Code Standards
Software Accomplishment Summary
Trace Data
Software Requirements Data
Design Description
Source Code
Executable Object Code
Software Verification Cases and Procedures
Software Verification Results
Software Life Cycle Environment Configuration Index
Software Configuration Index
Problem Reports
Software Configuration Management Records
Software Quality Assurance Records
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Further, templates are already provided for the documenta-
tion of certain lifecycle data. For example, the organisation
of the Plan for Software Aspects of Certification and Soft-
ware Configuration Management Plan is explicitly defined
by the guidance. The DO178C guidance insists that all lifecy-
cle data ‘‘is written in terms which only allow a single interpre-
tation, aided if necessary by a definition’’. Similarly, the
structural elements of an assurance case are clearly defined
in most standards that require them, i.e. claims, arguments
and evidence. In addition, many standards require that the
arguments being presented be comprehensible and clear.
However, making an assurance argument clear requires
more than simply using the syntax of structured argumen-
tation. Clarity of the data generated from prescriptive stan-
dards and assurance cases can therefore be seen to serve
two different purposes. Clarity in prescriptive standards
such as DO178C targets compliance (Graydon et al., 2012),
e.g. is it clear how the generated lifecycle data achieve the
certification objectives? Clarity in assurance arguments tar-
gets safety assurance, i.e. is it clear how strong the argument
and evidence are in supporting the claims about software
safety?.

2. Rationale: DO178C provides valuable guidance on how to
implement high-quality and repeatable software engineer-
ing processes. Whilst there can be said to be an implicit
rationale (as established by the standards writers) for the
specific processes and forms of evidence required by stan-
dards such as DO178C, there is a lack of explicit rationale.
Being implicit, it can be harder for developers to appreciate
the significance of the standard’s requirements, and why
they vary according to level of risk. In addition, it can be
harder to judge the applicability of the requirements to
the specific application under development.

Assurance cases demand rationale (for the development
decisions made and assurance evidence generated) to be
presented (by the developer) on a case by case basis. This
enables the rationale to be closely and explicitly tied to
the specific features of the application and criticality of the
required behaviour. However, without the practice of devel-
oping and sharing assurance case patterns, this could be
seen as detrimental to the propagation of good practice.
It is worth noting that the evidence generated by following a
DO178C approach may be sufficient to support a compelling
safety assurance argument if the rationale accompanying
the use and interpretation of DO178C is explicitly communi-
cated. The experience of the authors is that normally the
only rationale for producing the evidence is that DO178C re-
quires it. The link to the required safety behaviour of the
system is therefore implicit and potentially tenuous. The
areas of the argument most implicitly supported by
DO178C evidence are those related to the analysis of
hazardous failure behaviour. A DO178C process does not re-
quire any explicit software hazard analysis to be performed
at the software level. Whilst this can also be overlooked in
software safety case development (e.g. where the case relies
simply on appeal to development and assurance processes)
the requirements for explicit arguments and evidence
should make this visible, and identifiable in review.

3. Amenability to review: From a mere compliance point of
view, reviewing compliance with DO178C is easier than
reviewing the acceptability of an assurance case since most
of the required items of evidence needed for satisfying the
DO178C objectives are prescribed. In effect the standard
gives checklists through the definition of the scope of a
SAS and means for compliance. The absence of information,

or the inadequacy of information, e.g. on the handling of
change, is often immediately apparent on reading a SAS.
However, from a safety assurance point of view, the level
of confidence that can be placed in the evidence is more dif-
ficult to review in the absence of an explicit assurance argu-
ment that justifies why the evidence supports claims about
software safety. DO178C focuses, almost exclusively, on the
generation of evidence. The assurance argument is implicit
within the approach. By definition it is very difficult to
understand an implicit argument, and therefore it is also dif-
ficult to review. By producing an explicit assurance argu-
ment, the suitability of the DO178C evidence for
demonstrating that the software is acceptably safe to oper-
ate in a particular context could be more clearly reviewed
and judged.
The explicit representation of an assurance argument is par-
ticularly important for developers wishing to provide alter-
native items of evidence, e.g. evidence generated from
formal mathematical analysis rather than testing (Hayhurst
et al., 1998). Where alternative approaches are used, a re-
viewer must be convinced of the relevance and suitability
of the alternative evidence. This is much easier to achieve
using an explicit assurance argument.
In summary, it is often easier to review a SAS than an assur-
ance case with respect to compliance. However, it is more
effective for a reviewer to judge the adequacy of the evi-
dence with respect to the assurance of risk mitigation when
provided with a well-structured safety argument.

4. Predictability: Our consideration of using DO178C for certifi-
cation of the WBS case study has indicated that the achieve-
ment of compliance with DO178C is far more predictable
than establishing and demonstrating assurance by means
of assurance cases. The certification objectives, means for
compliance and types of evidence are already clearly de-
fined in the DO178C guidance.
To achieve a similar level of predictability for an assurance
case approach would require that objective criteria for
judging a successful assurance case are clearly articulated
from the outset. Currently standards requiring an assur-
ance case provide little guidance on what these criteria
are, or how they may be judged. Indeed, this has been
one of the criticisms leveled at standards such as UK De-
fence Standard 00-56 (MoD, 2007). One of the motivations
for extracting and documenting patterns of assurance case
arguments is to help promulgate best practice, and provide
extra guidance in the development and review of assurance
cases. Using existing patterns as part of planning the assur-
ance approach to be adopted on a project can improve pre-
dictability and consistency of the process. The example in
Section 4.1 illustrates how the use of patterns to structure
an argument can be more predictable than an entirely
open-ended assurance case approach. Indeed, recent expe-
rience supports this finding (Hawkins et al., 2011).

5. Effort: The assurance argument can help to target the effort
where it adds most value from a safety assurance perspec-
tive rather than from a correctness perspective. It is unclear
however how much effort the assurance case approach adds
to a software development project – or, conversely, if it can
save effort by avoiding the generation of evidence which is
not of significance for a particular system. Cost-benefit stud-
ies are essential in order to begin to answer these questions.
This is an important area for further work. An area where
cost may be reduced is through separating safety–critical
and non-safety–critical behaviours within the same soft-
ware application, thus developing some of the application
to a lower assurance. This could be achieved through
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including an argument of non-interference between soft-
ware of differing levels of criticality as part of an assurance
case. There are questions however as to whether, in the light
of the increasing complexity of modern software-intensive
systems, it is feasible to make such an argument with any
confidence. It may in fact be cheaper to develop all the soft-
ware using a common assurance approach, especially as ver-
ification technology improves, rather than perform the
required detailed analysis of non-interference.
What the comparison above has indicated is that neither the
prescriptive approach of DO178C, nor an assurance case ap-
proach provides a perfect solution for software safety assur-
ance. Both approaches have advantages and limitations.
What this paper seeks to demonstrate however is that if
used correctly, the two approaches can be complementary,
and could lead to a better solution than either approach
on its own. For example, a prescriptive standard could be
used as guidance as to best practice on evidence selection
(such as indicating the level of test coverage required, or
defining the necessary level of independent review); the
assurance case can be used to explain the role of that evi-
dence as part of the demonstration of the safety of the par-
ticular system under consideration. The assurance case can
also be used to provide justification for system-specific devi-
ations from the obligations of a prescriptive standard, either

where an alternative approach is more appropriate for the
particular system design solution, or where the obligations
of the standard, on their own, would be insufficient due to
the nature of the system hazards.
The above observations are supported by other published
research. Knight (2008) describes the need for the flexibility
that an assurance case brings for software, particularly for
the selection of verification evidence, even if working in a
DO178C regime. Further, an incident is described by Johnson
and Holloway (2007) where an aviation software system
had been tested and developed to DO178C. The software
testing was limited to the original specification and require-
ments of the component. These did not consider the partic-
ular scenario that arose during the incident. One of the
motivations for proposing a hazard-directed assurance case
approach is the belief that this will reduce the likelihood of
such omissions.
The explicit consideration of software safety claims, argu-
ments and evidence is also emphasised in a study sponsored
by the National Research Council (Jackson et al., 2007). In
this study, the authors argue that claims of achievement of
dependability by merely complying with certain processes
are ‘‘unsubstantiated, and perhaps irresponsible’’. The safety
assurance of software should be only trusted if a credible
case is produced in support of the software safety claims.

Table 2
DO178C verification objectives.

Verification of outputs of software requirements process Verification of outputs of software coding and integration processes

A7.3.1: Software high-level requirements comply with system
requirements

A7.5.1: Source Code complies with low-level requirements

A7.3.2: High-level requirements are accurate and consistent A7.5.2: Source Code complies with software architecture
A7.3.2: High-level requirements are compatible with target computer A7.5.3: Source Code is verifiable
A7.3.2: High-level requirements are verifiable A7.5.4: Source Code conforms to standards
A7.3.2: High-level requirements conform to standards A7.5.5: Source Code is traceable to low-level requirements
A7.3.2: High-level requirements are traceable to system requirements A7.5.6: Source Code is accurate and consistent
A7.3.2: Algorithms are accurate A7.5.7: Output of software integration process is complete and correct

Verification of outputs of software design process (LL requirements) Testing of outputs of integration process

A7.4.1: Low-level requirements comply with high-level requirements A7.6.1: Executable Object Code complies with high-level requirements
A7.4.2: Low-level requirements are accurate and consistent A7.6.2: Executable Object Code is robust with high-level requirements
A7.4.3: Low-level requirements are compatible with target computer A7.6.3: Executable Object Code complies with low-level requirements
A7.4.4: Low-level requirements are verifiable A7.6.4: Executable Object Code is robust with low-level requirements
A7.4.5: Low-level requirements conform to standards A7.6.5: Executable Object Code is compatible with target computer
A7.4.6: Low-level requirements are traceable to high-level requirements
A7.4.7: Algorithms are accurate

Verification of outputs of software design process (architectures) Verification of outputs of software testing

A7.4.8: Software architecture is compatible with high-level requirements A7.7.1: Test procedures and expected results are correct
A7.4.9: Software architecture is consistent A7.7.2: Test results are correct and discrepancies explained
A7.4.10: Software architecture is compatible with target computer A7.7.3: Test coverage of high-level requirements is achieved
A7.4.11: Software architecture is verifiable A7.7.4: Test coverage of low-level requirements is achieved
A7.4.12: Software architecture conforms to standards A7.7.5: Test coverage of software structure (MC/DC) is achieved
A7.4.13: Software partitioning integrity is confirmed A7.7.6: Test coverage of software structure (decision coverage) is achieved

A7.7.7: Test coverage of software structure (statement coverage) is achieved
A7.7.8: Test coverage of software structure (data coupling and control coupling) is
achieved

Table 3
Assurance case evidence vs. DO178C verification results.

Assurance case evidence DO178C verification results

Sol: WBSFTA [Ref - WBS system Fault Tree Analysis] Outside the scope of DO178C (addressed at the systems level by ARP4761)
Sol: SSR1SysTest [Ref – System Integration Test results for tests 027 to 035] A7.4.8, A7.6.3, A7.6.4, A7.7.5, A7.7.8 and A7.7.4
Sol: classDesignReview: [Ref – low-level design review report] A7.4.1
Sol: designHAZOP: [Ref – report of software HAZOP over low level design]
Sol: SSRxUnitTest:[Ref – ‘Braking’ Unit Test results for tests 02 to 09] A7.6.3 and A7.6.4, A7.7.5, A7.7.8 and A7.7.4
Sol: semAnal [Ref – semantic analysis report] A7.5.1
Sol: staticAnal [Ref: static analysis report for Braking module code] A7.5.6
Sol:codeReview Source code review report A7.5.4 and A7.5.6
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Even in goal-based standards, compliance with a prescrip-
tive certification approach, e.g. based on DO178C, is still
considered good practice. For example, the Defence Stan-
dard 00-56 (MoD, 2007), which requires an assurance case
approach, states that, in some domains, a certification ap-
proach such as DO178C ‘‘can work extremely well and it
has the advantage of providing an authoritative definition
of good practice’’.

5.4. Threats to validity

We conclude this section by considering internal and external
threats to the validity of the results of this study.

Internal validity: The system considered in the study, i.e. the air-
craft WBS, was based on the specification provided in the Aviation
Recommended Practice (ARP) 4761 Appendix L (SAE, 1996b). Ide-
ally, the study should be based on an operational system. However,
publically releasing safety-related information that describes sys-
tem-specific design features is often infeasible. As such, the use
of the aircraft WBS specification provides a credible example since
it was developed by a committee of practicing aerospace engineers
and safety assessors. Further, it is extremely difficult, due to page
limit constraints, to present a complete assurance case for the sys-
tem. Nevertheless, the study has considered a diverse set of lifecy-
cle data which is representative of the different stages of
development and assessment: requirements specification, design,
implementation and verification as well as how safety analysis is
considered at each of these stages. The study also considered both
the product and process perspectives of certification that often
form necessary parts of software safety assurance. Finally, experi-
menter bias is always a key threat to research studies. To limit the
degree of bias, the criteria against which the study was performed
were independently reviewed through a set of questionnaires that
were completed by practicing engineers and assessors. Further, the
chain of reasoning between the study data and results is docu-
mented in detail in order to facilitate a critical evaluation by read-
ers, including the provision of counter-evidence and counter-
interpretations. This is inevitable given the qualitative nature of
this type of research.

External validity: Our study has focused on an airborne system
to which compliance with the DO-178C requirements is applicable.
Of course, more studies based on systems from other safety–criti-
cal industries are needed before being able to generalise the results
of our study. However, the process specified in DO178C is very
similar to processes specified in other prescriptive standards, e.g.
the automotive standard ISO 262626 (ISO, 2011). Further,
DO178C, and more specifically DO-178B, has often been used in
other domains, e.g. in defence (MoD, 2007). Finally, GSN was used
to represent the assurance argument fragments for the WBS. These
argument fragments are notation independent and as such can
equally be represented in textual or tabular formats.

6. Conclusions

As interest in the application of assurance cases to software sys-
tems has grown, so has the debate surrounding the relative merits
of an assurance argument approach and a more traditional (pre-
scriptive) approach such as defined in the DO178C guidance. As this
paper has described, there can in fact be seen to be a role for both in
a successful software assurance regime. An approach such as that
defined in DO178C provides very clear guidance on the processes
and techniques that may be adopted in a particular domain. An ex-
plicit assurance argument provides a means of demonstrating and
justifying the sufficiency of the evidence for a specific system con-
text; for example, this might include justifying the methods and

tools chosen for a DO178C process. The authors acknowledge the
challenge of developing a compelling assurance argument for com-
plex software systems, particularly for those with limited experi-
ence of developing assurance arguments; it is clear that the
flexibility enabled by the use of assurance cases also introduces
uncertainty in terms of what is sufficient argument and evidence.
It is our intent that published guidance such as the software safety
argument pattern catalogue in (Hawkins and Kelly, 2010) can help
in this regard, and our sketch of two different ways of linking assur-
ance cases and DO178C processes may also help. However, there re-
mains further work to be done in this area; not the least, more work
is needed to assess the predictability and effort associated with the
different approaches. Finally, the initiatives to standardise assur-
ance cases across domains (OMG, 2010) should also prove to be
helpful in encouraging the sharing of experience and expertise be-
tween all those industrial sectors that employ assurance cases.
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